LABVIEW: THIS OR THAT?

TERRY STRATOUDAKIS
March 15, 2016

I

AGENDA

1 Intfroductions
-1 Background

- LabVIEW: This or That?

o Future Meetings/Topics?

- Intfroductions

Terry Stratoudakis, P.E.

L
' LabVIEW user since 1998

- BSEE/MSEE NYU Polytechnic Institute
1 CLA since 2010, CPI since 2008
o Taught over 110 weeks of LabVIEW courses

-1 ALE System Integration co-founder

ALE System Integration

1
7 New York and Maryland offices

-1 Defense, energy, and research applications
1 Advanced custom LabVIEW training

1 Process driven

1 NI Alliance Partner since 2004

- Background

Recipe vs. Strategy
N

71 Recipe Driven:

o0 Write to a file with 1 second loop time

0 Write to a file that is 50Msamples/sec x 256 channels

o Strategy Driven:

o Refactor a 1,000 VI project for making additions

0 Move parts of an existing test to run on an FPGA

Basis for Analysis
N

1 Obijectively review all views

1 Review ni.com, lavag.org, and LabVIEW blogs

1 Understand general computer programming perspective
7 ldentify examples

1 Expand examples with scenarios

- This or That?

Cast of Characters — Part 1
S

0 timeout or no-timeout?
-1 one loop or two loops?
1 tabs or subpanels?

1 project folders: virtual or auto-populating?

Cast of Characters — Part 2

e
1 VI Server or SubVls

1 Ivlibs or lviclasses
1 strings or enums
1 queues or events

Extra Credit: how much debug logging?

el
Prediction: we will run out of timel =

Time-out or no Time-out?

4
Scenario: Events, Notifiers, Queues have timeout options

Timeout
1 Pros — non-blocking, something can always run

1 Cons — not a substitute for a loop

No Timeout
71 Pros — no polling, execute only when needed

1 Cons — blocking code can lock up program

Verdict — an escape path is always needed

One Loop or Two?
B

Scenarios: Producer Consumer, QMH

One While Loop

1 Loop 1: State Machine; contains event structure

Two While Loops
1 Loop 1: Event Structure

1 Loop 2: State Machine

One Loop

L L L L r o e

IIII' Iqu0 Actionll

Consider the appropriate timeout for your application

10 —E 1| (0] "OK", "Cancel", "Launch.Dynamic": Value Change "’F
OK Mote: The label for the
boolean buttons must be the
Cancel zame exact text for the
subsequent case structure,
Launch Dynamic

.r.- CtIRef B =z Bool O
......... I; LabElITE::{t #

----- W || Cluster

I —

e [t | Ul == s S 2 B o
e ;!:-i. i |
. ' [

W % RegEvents
¢ UserEvent -

This shift register
stores the data for
the message
handler

Two Loops

fa[[4] "Exit": Value Change

B

M
Message Cases

[
essage Handling Loop

4| "Initialize"

- P' B

Initialize - All initialization work should take place in this message, since other loops can

potentially enqueue messages that execute immediately after this one.

Eﬁ_;%_?'_ _____ :

Do Something <Replace Me»

—

Do Something Ref

i

@ Boolean

Do Something Else <Replace

Do Something Else Ref

Mex

Data Display Ref [

@ Boolean

i

Display <Replace Me>

Exit Button Ref

String <Replace Me=

i

& Strinc
Exit

|(‘ Booleani

Bundle control references and a sample
string value,

Update Display [~ E‘EE-I-

)

: : Initial Message

SHEY

One Loop or Two - Analysis

-]
One Loop

71 Loop: State Machine; contains event structure
71 Pros — simpler to debug, one state at a time

1 Cons — not multi-core, no choice in timeouts (required)

Two Loops -
71 Loop 1: Event Structure, Loop 2: State Machine
71 Pros — multi-core, event and queue handling in same VI

1 Cons — need communication between loops

Tabs or Subpanels?
B

Scenario: Not enough room on Front Panel

Test application

1 Config, Calibration, Test, Report screens

Control application

o Alarms, Monitoring, Dataviewer screens

Tab Control
S

Subpanels

Main_CP_example.vi

Tab or Subpanels - Analysis

e
Tab Control

1 Pros — simple, familiar, all controls in same VI

1 Cons — not scalable, most code runs in Ul thread, memory
intensive, results in one massive top-level VI

Subpanels

=1 Pros
o0 Load GUIs into memory as needed, plug-in
0 Modular — more simultaneous developers
o abstract GUI from computing code

1 Cons — increases complexity, more inter-VI messaging

What about Xcontrols?

Graphical User Interface

!
Sub panels

7 Load GUIs into memory as needed

1 Modular — more simultaneous developers

Tab controls
1 Not scalable

-1 Every GUI is always in memory
o Inefficient memory usage for large applications

1 Results in one massive GUI VI

VI Server or SubVIs?*

Scenario: Not enough room in one Block Diagram

SubVls
1 Pros — easy to create and call
- Cons — always in memory™*

VI Server

71 Pros — plug-in architectures, load Vls as needed, less memory,
remote access

1 Cons — increases complexity, more inter-VI messaging

* Similar to tab controls or subpanels discussion

** Call Setup... @j_é

SubVis: Call Node Setup

Visible ltems 3
Help

Examples

Description and Tip...
Breakpoint b

Ch\Users\Terny\Desktop\Subpanels - Dock
Create > Undock\CP_Find_Child_Ref_from_Array.vi

Replace »

F

! Relink To SubVI Loading Options:

rl
nEm
mEz

SubVl Node Setup... () Load with callers
@;Reload for each call

Enable Database Access

Call Setup...
= () Load and retain on first call

Find All Instances
Open Front Panel oK Cancel
Show VI Hierarchy

Explore...

4 View As [con

Remove and Rewire

ﬁ Properties

Ivlib or lviclass?

4
Scenario: Need LabVIEW Libraries (not .LLBs)

LVLIBs
71 Pros — group code, easy to start using, scope settings,
namespace

1 Cons — no inheritance

LVCLASS
1 Pros — OOP benefits
1 Cons — complexity goes up

strings or enums?
B

Scendario: State Machine command datetype

Enums
1 Pros — Strictly-typed, enforced at compile-time
1 Cons — extra dependencies, cannot add without recompile

Strings
71 Pros

O can embed messages, low coupling
o JKI State Machine, QDMH

1 Cons — errors caught at run-time

Quevues or Events?
S

Scenario: Messaging between different Vs

Quevues

71 Pros — reduces copies of memory, code remains in same
thread, complete API

1 Cons — cannot broadcast, data can be intercepted if Queue
name is known

Events

71 Pros
O Messaging between DLLs and LabVIEW
o Broadcast (N:N
-1 Cons
o APl is not complete (i.e. no Get Event Status)

From LabVIEW R&D:

stos Queue

V R&D: | write C++/# so
you don't have to.

Members
eeee00

2,852 posts

Location: Austin, TX
/ersion: LabVIEW 2011
Since: 2000

H1 <
Posted 01 December 2010 - 01:14 AM
Speaking as the guy who wrote the queue primitives... r
o
The queues are meant to be the primary means of communicating data in LabVIEW between parallel chunks of code. They are POPULAR

completely thread safe, and they participate with LabVIEW's concurrency scheduling algorithms. They're designed to minimize
both data copies and latency and have been stable for many years.

User events go through queues that share most of the code with the general queues, although they have a bit more overhead since at any
time there might be multiple listeners for an event, which can (not necessarily "will", just "can") cause more data copies. User events are data
broadcasters, where as general queues are data point-to-point transmitters. The general queues thus have less overhead, but it is a very small
amount less overhead.

For me personally, | prefer the general queues instead of the user events only because of the arcane nodes and special terminals that are
required to register dynamic user events. | use user events when | need to have code that sleeps on both Ul events and data arrival. But it is
really personal preference -- many programmers are successful using user events generally.

=2
Ele

Various Inter-process Communication Methods

Same target Same target, different application instances
Same application instance OR

Different targets on network

Storing - * Single-process shared variables « Network-published shared variables (single-
Ozl Local and global variables element)
« FGV, SEQ, DVR « CCC
« CVT
* Notifiers (Get Notifier)
Sending .(Queves (N:1)) Example * TCP,UDP
Message | User events (N:N) | Native Network Streams (1:1)
*| Notifiers (1:N) LabVIEW * AMC (N:1)
*| User Events APls « STM(1:1)
Streaming *\ Queues) Network Streams
- TCP

NATIONAL

and more (RT, FPGA, etc)... P INSTRUMENTS: ni.com/training

Foundational Native LabVIEW APIs for Messaging

7

* Lossless (option)
* Buffered
* Full AP
* 1:1, N1
* Named

 Pointer to Data
« 1:1, 1:N, N:1, N:N
 Full API

) [

« Secure
* Flexible

« 1:1,N:1,

N
1:N,N:N

* 1:1, 1:N
* Full API

L * Lossy
* Named y

NATIONAL
’ INSTRUMENTS l

ni.com/training

Questions? Commentis?

- CONTACT INFO

terry@aleconsultants.com

www.aleconsultants.com

B T vou

DHPC Technologies — hosting

National Instruments — food & refreshments

