
LABVIEW: THIS OR THAT?

TERRY STRATOUDAKIS
March 15, 2016



AGENDA

¨ Introductions

¨ Background

¨ LabVIEW: This or That?

¨ Future Meetings/Topics?



Introductions



Terry Stratoudakis, P.E.

¨ LabVIEW user since 1998

¨ BSEE/MSEE NYU Polytechnic Institute

¨ CLA since 2010, CPI since 2008

¨ Taught over 110 weeks of LabVIEW courses

¨ ALE System Integration co-founder



ALE System Integration

¨ New York and Maryland offices

¨ Defense, energy, and research applications

¨ Advanced custom LabVIEW training

¨ Process driven

¨ NI Alliance Partner since 2004



Background



Recipe vs. Strategy

¨ Recipe Driven:
¤ Write to a file with 1 second loop time
¤ Write to a file that is 50Msamples/sec x 256 channels

¨ Strategy Driven:
¤ Refactor a 1,000 VI project for making additions
¤ Move parts of an existing test to run on an FPGA



Basis for Analysis

¨ Objectively review all views

¨ Review ni.com, lavag.org, and LabVIEW blogs

¨ Understand general computer programming perspective

¨ Identify examples

¨ Expand examples with scenarios



This or That?



Cast of Characters – Part 1

¨ timeout or no-timeout?

¨ one loop or two loops?

¨ tabs or subpanels?

¨ project folders: virtual or auto-populating?



Cast of Characters – Part 2

¨ VI Server or SubVIs

¨ lvlibs or lvlclasses

¨ strings or enums

¨ queues or events

Extra Credit: how much debug logging?

Prediction: we will run out of time!



Time-out or no Time-out?

Scenario: Events, Notifiers, Queues have timeout options

Timeout
¨ Pros – non-blocking, something can always run
¨ Cons – not a substitute for a loop

No Timeout
¨ Pros – no polling, execute only when needed
¨ Cons – blocking code can lock up program

Verdict – an escape path is always needed



One Loop or Two?

Scenarios: Producer Consumer, QMH

One While Loop
¨ Loop 1: State Machine; contains event structure

Two While Loops
¨ Loop 1: Event Structure
¨ Loop 2: State Machine



One Loop



Two Loops



One Loop or Two - Analysis

One Loop
¨ Loop: State Machine; contains event structure
¨ Pros – simpler to debug, one state at a time
¨ Cons – not multi-core, no choice in timeouts (required)

Two Loops -
¨ Loop 1: Event Structure, Loop 2: State Machine
¨ Pros – multi-core, event and queue handling in same VI
¨ Cons – need communication between loops



Tabs or Subpanels?

Scenario: Not enough room on Front Panel

Test application
¨ Config, Calibration, Test, Report screens

Control application
¨ Alarms, Monitoring, Dataviewer screens



Tab Control



Subpanels



Tab or Subpanels - Analysis

Tab Control
¨ Pros – simple, familiar, all controls in same VI
¨ Cons – not scalable, most code runs in UI thread, memory 

intensive, results in one massive top-level VI

Subpanels
¨ Pros

¤ Load GUIs into memory as needed, plug-in
¤ Modular – more simultaneous developers
¤ abstract GUI from computing code

¨ Cons – increases complexity, more inter-VI messaging 

What about Xcontrols?



Graphical User Interface

Sub panels
¨ Load GUIs into memory as needed
¨ Modular – more simultaneous developers

Tab controls
¨ Not scalable
¨ Every GUI is always in memory

¤ Inefficient memory usage for large applications
¨ Results in one massive GUI VI



VI Server or SubVIs?*

Scenario: Not enough room in one Block Diagram

SubVIs
¨ Pros – easy to create and call
¨ Cons – always in memory**

VI Server
¨ Pros – plug-in architectures, load VIs as needed, less memory, 

remote access
¨ Cons – increases complexity, more inter-VI messaging 

* Similar to tab controls or subpanels discussion
** Call Setup…



SubVIs: Call Node Setup



lvlib or lvlclass?

Scenario: Need LabVIEW Libraries (not .LLBs)

LVLIBs
¨ Pros – group code, easy to start using, scope settings, 

namespace
¨ Cons – no inheritance

LVCLASS
¨ Pros – OOP benefits
¨ Cons – complexity goes up



strings or enums?

Scenario: State Machine command datetype

Enums
¨ Pros – Strictly-typed, enforced at compile-time
¨ Cons – extra dependencies, cannot add without recompile

Strings
¨ Pros

¤ can embed messages, low coupling
¤ JKI State Machine, QDMH

¨ Cons – errors caught at run-time



Queues or Events?

Scenario: Messaging between different VIs

Queues
¨ Pros – reduces copies of memory, code remains in same 

thread, complete API
¨ Cons – cannot broadcast, data can be intercepted if Queue 

name is known

Events
¨ Pros

¤ Messaging between DLLs and LabVIEW
¤ Broadcast (N:N

¨ Cons
¤ API is not complete (i.e. no Get Event Status)



From LabVIEW R&D:



ni.com/training

Various Inter-process Communication Methods 

and more (RT, FPGA, etc)…

Same target
Same application instance

Same target, different application instances  
OR 
Different targets on network

Storing -
Current Value 

• Single-process shared variables
• Local and global variables
• FGV, SEQ, DVR
• CVT
• Notifiers (Get Notifier)

• Network-published shared variables (single-
element)

• CCC

Sending 
Message

• Queues (N:1)
• User events (N:N)
• Notifiers (1:N)
• User Events

• TCP, UDP
• Network Streams (1:1)
• AMC (N:1)
• STM (1:1)

Streaming • Queues • Network Streams
• TCP

Example
Native 
LabVIEW
APIs



ni.com/training

Foundational Native LabVIEW APIs for Messaging

• 1:1, 1:N
• Full API
• Lossy
• Named

• Pointer to Data
• 1:1, 1:N, N:1, N;N
• Full API

• 1:1,N:1,1:N,N:N
• Secure
• Flexible

• Lossless (option)
• Buffered
• Full API
• 1:1, N:1
• Named

Queues User  
Events

NotifiersDVRs



Questions? Comments?



terry@aleconsultants.com

www.aleconsultants.com

CONTACT INFO



DHPC Technologies – hosting

National Instruments – food & refreshments

THANK YOU


